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Abstract. The static properties of a thin ferromagnetic film near the phase transition point 
from the state of homogeneous magnetisation and deformation to the state of domain and 
modulatedstructureareconsidered. The phase transition iscaused byachangein theexternal 
in-plane magnetic field. The strain-modulated structure concurrent with the nucleation of 
the stripe domains is described by means of the simplified perturbation scheme for solving 
the magneto-elastic equilibrium equations. 

We consider a ferromagnetic sample in the shape of a thin film. The sample is a uniaxial 
ferromagnet made in such a way that the easy-magnetisation axis is perpendicular to the 
film plane. Let us assume that the in-plane sample dimensions are large enough that 
they can be treated as infinite in comparison with the film thickness L .  The Cartesian 
coordinate system has been chosen in such a manner that the z axis is perpendicular to 
the film plane; it coincides with the direction of the easy-magnetisation axis. The energy 
constant of the uniaxial volume anisotropy of the ferromagnet is less than the maximum 
value of the demagnetising energy, i.e. K < 2nM:.  The considerations are confined to 
the low-temperature region T 4 T, where the magnitude M ,  = /MI of the magnetisation 
vector may be assumed to be constant. 

In the presence of an external in-plane magnetic field applied in they axis direction 
and of value greater thaaeritical value H,(L), the sample is homogeneously magnetised 
in the field direction, i.e. M = MO = [0, M , ,  01. We shall call this magnetisation state the 
ground state. In real ferromagnetic materials, which are also elastic, the ground state of 
magnetisation is accompanied by a ground state of deformation. The latter appears, 
even without external forces, as a result of the magneto-elastic coupling in ferromagnets 

For films of thickness greater than the critical value L,, i.e. for L > L,(H = 0), the 
decrease in the external magnetic field below the critical value leads, at H = H,(L), to 
the occurrence of the magnetic phase transition. It is the transition from the above- 
mentioned ground state of homogeneous magnetisation to the state with the stripe 
domain structure [3-81. An analysis of the energy of a thin ferromagnetic film, including 
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magneto-elastic interactions with hexagonal symmetry, has been performed [9, lo]. The 
static and dynamic characteristics of the system given in [9, 101 indicate that the magnetic 
phase transition is accompanied by a structural phase transition from the ground state 
of homogeneous deformation to some kind of modulated structure. 

Our aim in this paper is to attempt to describe the strain-modulated structure 
concurrent with the nucleation of domains. It is a very complicated problem [2,3] 
because of the non-linearity of the coupled magnetic and mechanical equilibrium 
equations which ought to be solved with respect to the magnetisation vector M and 
displacement vector U. For this reason, we confine our investigation of the problem to 
the vicinity of the phase transition point, i.e. for the magnetic field intensities obeying 
the condition H ,  - H G H,. Under the above restriction for the external magnetic field 
the magnetisation M and the deformation e,] i(u,,] + U,,,) can be described by their 
small deviations from the ground state: 

y = m - m O =  [ P x ,  -iM + P39 PI1 El]  = e, - e; (1) 
where m = M; 'M and i, j = x ,  y ,  z .  Use of the small values lpll G 1 and I E , ] ~  e 1 will 
enable us to make some simplifications in the equilibrium equations. 

To obtain the equations for y and U, we employ the so-called conventional mag- 
netostriction theory used by many researchers and also in our previous work [9, lo]. 
Within this phenomenological theory the energy of the ferromagnet is presented as a 
sum of terms describing the elastic, magneto-elastic and magnetic energies: 

F{m, 7 mf3]  7 e,,> = F"eJ + r"e{mI, e,,> + F m b l  , m,J (2) 
The first two terms in (2) for the uniaxial ferromagnet with a tetragonal or hexagonal 
lattice are usually written in the following form: 

= JV d r  [icll  (e:x + e;y) + c12exxeyy + i c a e ; z  

+ (B12m? + Bllm;)eyy + B33mlerr + 2B66mxmyexy 

+ 2 B 4 4 m Z ( m X e x Z  + myeyZ) l  (3b) 
where the abbreviated Voigt notation has been used for the fourth-rank tensors Cijkr and 
Bij,,-theelasticandmagneto-elasticmaterialconstants, respectively. For the hexagonal 
crystal lattice, we assume further that the following equalities are fulfilled: 

2 C M  = c11 - c12 B66 = Bll - B12- (4) 
The magnetic energy of the uniaxial ferromagnet may be described by the functional 

p { m i ,  mi,j) = J dr(Ami,jmi,j  - Kmt + K2m:! - b M i h f m i  - M i h i m i )  
V 

+ ls K,mZ d S  

whereh, = M;'HPXt = [0, h ,  O]isthereducedmagneticfield, h f  = M F ' H f  isthedemag- 
netisation field and miJ = am,/axj. A is the exchange energy constant. K and K2 are the 
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volume anisotropy constants and K ,  is the surface anisotropy constant. Magnetostatic 
Maxwell's equations connect the demagnetisation field hd and magnetisation m: 

& i j k h y k  = (h!  + 4 n m , ) ,  = 0 (6) 
where the convention of summing over repeated indexes is applied. The ground state of 
deformation et  for assumed homogeneous magnetisation m" = [0, 1,0] is determined 
by the equation 

(sF/se!,)le~.mp = 0. (7) 

The explicit form of the formulae for the e: tensor components can be found in [9] or 

Evaluating the total free energy F,  given by ( 2 ) ,  (3) and ( 5 ) ,  in the vicinity of the 
ground state m", e: and using (l), we obtain (for the part connected with deviations p 
and E, ] )  the following approximative expression: 

[ I l l .  

where K *  and K,* are the volume anisotropy constants renormalised by mag- 
netostriction. Further, we assume the two variable dependences p = p(x, z )  for the 
magnetisation and E;, = q j ( x ,  z )  for deformation, i.e. its spatial distributions are homo- 
geneous in they direction. From equilibrium equations of the form 

Eqkpj SF/S,Uk = O ( S F / S & , ) ,  = 0 (9) 
with the significant assumption of the term proportional to p : ,  we obtain the following 
set of differential equations: 

(UV*,U, + ( p *  - h ) p z  + h: - i(p* + p ; ) p :  

- ( B 4 4 / C 4 4 M $ ) ( C 4 4  a u y / a z  + B44p2) = (10) 

(11) 

(12)  

CY 2A/Ma p* = 2 K * / M z  /3'; = 8 K , * / M : .  (13) 

C? v2px - hpx + h i  - (B66/C156~;)(C66 auy/ax f B66p.x) = 0 

(a/ax)(c66 d'y/ax + B 6 b p x )  + ( a / d Z ) ( C 4 4  d u y / a z  + B U p z )  = 

where the following definitions have been used: 

The set of differential equations (lo)-( 12) should be solved simultaneously with the 
magnetostatic equations (6). We assume the solutions to fulfil the boundary conditions 
obtained by linearisation of the appropriate equilibrium equations on the surfaces of the 



5762 M Gajdek et a1 

thin film. When the surface anisotropy is of the easy-plane type (the hard axis is 
perpendicular to the film surfaces), the boundary conditions for the magnetisation vector 
have the form 

(apz/az P z l ~ t ) z = t L / Z  = 0 ( ~ ~ x / a ~ ) / z = * L / 2  = 0 (14) 

where A, = A = A K ; ' .  The parameter A describes the degree of surface spin pinning; 
the spins are completely pinned when the surface anisotropy is extremely strong, A =O.  
The mechanical boundary condition for the U, component of the displacement vector 
when the surfaces are traction free takes the form 

(C, au,/az + B44Pdz=*L/2 = 0. (15) 

In [8] the solutions px(x, z ) ,  p&, z )  of the set of equations (10) and (11) have been 
presented for zero magnetostriction. They are the same (with the exchange of K *  for 
K )  as the solutions of equations (10) and (11) under the mechanical quasi-equilibrium 
condition aF/aEij .  The solution pz(x,  z )  has the following form: 

p L , ( x ,  z )  = pol sn(kx;p) cos(kz) + poz sin(2nx/A) cos(kz) (16) 
h = h ,  

whereas px(x, z )  is determined by the equation [8] 

dpx/ax  = -[(4~ - p* + h)/(4~d + h)] apz/az 

p x ( x ,  2) = p o x g ( k x ;  p )  sin(kz) -+ pox cos(2nx/A) sin(kz). 

(17) 

and has the form 

(18) 
h - h ,  

The structure parameters poz, pox, A ,  h, and L, are given in the Appendix. To satisfy 
the boundary conditions (14) by px(x ,  z )  and pz(x,  z ) ,  the following equation for the 
parameter k must hold: 

k tan(lkL) = A-' .  (19) 

For relatively small values of A 
form 

L, there exists an approximate solution of (19) in the 

k -- n/(L + 2A). (20) 

The proposed method of estimation of the strains in the modulated structure consist 
of the performance of the first step in a perturbative scheme for the set of equations 
(10)-(12), i.e. the solution of equation (12) using the results given by (16) and (17) as 
the zero-order approximation. Inserting (17) and the approximate form of pz(x, 2) given 
by (16) into (12) and (15), one can obtain the differential equation for the u,(x, 2) 

component of the displacement vector and its boundary condition. The solution fulfilling 
the boundary condition may be described as the deviation of U, from the ground-state 
value U; in the following form: 

Au,(x, Z )  u,(x ,  Z )  - U," 

=[-SI s i n h [ ( 2 n G / A < ) z ]  + O0 sin{[n/(L t 2A)]')]sin[(2n/A)x]. 
(21) 
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Figure 1. Schematic illustration of the displacements Au, (x ,  z )  in the modulated structure; 
in the second plane is shown the projection of the magnetisation vector on the ( x ,  z )  plane 
(perpendicular to the film surfaces) for stripe domain structure. 

The amplitudes 6(, and 61 are given by the following expressions: 

60 = { [ (BM - 844)(4n + h )  - B J * ] / ( C 4 4 k 2  -I- C6,K2)(4Jt  + h)IVWo, 

@ I  = (60 + B 4 4 E ” o Z / C 4 4 k ) n A k / k I  L/2 )  (23) 

(22) 

where k is given by (20), K 2n/A and k l  = K</G. 
An illustration of the strain-modulated structure may be the surface shape which 

we obtain as a result of the displacements Au,(x, z )  (given by (21)) in the direction 
perpendicular to the cross section of the film. Figure 1 shows the surface for amplitude 
O0 > 0, whereas in the second figure plane the stripe domain structure has been shown 
by plotting the projection of the magnetisation vector m = p + mo on the (x, z )  plane. 
The displacements Au,(x, z )  vanish at the critical point h = h, (where h, is given by 
(A4)) together with the magnetisation components px and p, because of the poz, pox - 
(h, - /I)’/~ dependence near h, (see (Al)  and (A2)) and the eo, 6 ,  - pO, proportionality. 
The deformation structure described by displacements Au,(x, z )  is periodical in the x 
direction with the period given by (A7) or in a more drastic approximation by the 
expression 

A(L, h )  = Ac(L){l + [(4n - /3*)A:/16p*(Lc + 2A)*L2](hC - h)/p*}.  (24) 

The variation in the external magnetic field leads to variations in the periodicity and 
amplitude of the strains in the modulated structure. 

It seems that one possibility for testing the existence of the strain-modulated structure 
is observation of the absorption effects for phonons which may interfere with this 
periodic structure. The other possibility is the effect of acoustic emission observed 
[12] in a ferromagnet in the domain nucleation phase during variation of the external 
magnetic field. Perhaps this effect is connected to the strain variation resulting from the 
fielddependence of theperiodh( L ,  h )  and amplitude I ~ ~ ) ( L ,  h)  of the modulatedstructure 
associated with the magnetic domain structure. 
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Appendix 

If we consider more general magnetic boundary conditions and take into account 
the second-order anisotropy term, the domain structure parameters differ from these 
derived in [8]. We present here, for the parameters describing the stripe domain struc- 
ture, the formulae including the surface spin pinning parameter A = A K ; ’  and the 
second-order anisotropy constant K,* . The amplitudes p(lz, ,u0, of the magnetisation 
components are scaled by the factors = K * / ( K *  + K T ) ;  so they take the form 

~ o z ( L ,  h )  = IIs(E’ - ‘sf>{E - [(4n + P*)/8n]E2,>-1111’2 (AI) 

(A21 

p(jx(L, h )  = [(4n - P* + h)/2(4n + h)][s(4n + @*)/8n]’/’ 
x [(Lc + 2A)/(L + 2A)I In[(l + P ) / ( l  - P)l. 

The amplitudes poz, pox tend to zero at h = h, proportionally to the factor [ (h ,  - h) /  
/3*]”2. In the above formulae, we use the reduced field parameter E and its critical value 
5,: 

‘s = (p*  - h ) p  

h,(L)  = p* - p*[1 - (/3*/4i~)~]-’(L, + 2A)/(L + 2A) 

L ,  = [ J G ( Y ( ~ ~  - /3*)/p*]’’2 - 2A. 

p 2  = ( E 2  - Em - [(4n + P*)/8~1‘s2,>-2. 

E ,  E (p*  - h , ) p  (‘43) 

(A41 

(A51 

(A6) 

where h, is the critical value of the external magnetic field: 

and where L,  denotes the critical thickness of the film: 

The symbol p that we use in (A2) denotes the elliptic integral modulus: 

The period of the domain structure which appears below the critical point h = h, may 
be expressed as follows: 

A(L, h )  = 4K(p)i?-’ = 4K(p)[(P*/2(~){g - [(4n + P*)/8n]Ef}]-1’2 (A71 
where K ( p )  is a complete elliptic integral of the first kind having the value K ( p )  = 
(n/2)(1 + 4p2 + . . .) for small values ofp (41 ) .  The critical value of the structure period 
A depends on the film thickness: 

A,(L) = 2d”*(L + 2A) / (L  - (A8) 
where a‘ = 4(4n + p*)’”(4n - /3*)-1’2(Lc + 2A). 
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